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Abstract. Accurate retinal vessel segmentation plays a critical role in
the early diagnosis of diabetic retinopathy. The uneven background dis-
tribution and complex morphological structure are still the challenges
for segmenting the vessels, especially the capillaries. In this paper, we
propose a novel deep network called Multiscale Morphological Enhance-
ment Network (M2E-Net). First, we develop a multiscale morphological
enhancement block, specifically the Top-hat/Bottom-hat module. Then,
the block is embedded in the shallow layers of the U-shape fully convo-
lutional network, which aims to reduce the influence of the uneven back-
ground distribution and enhance the texture contrast of fundus images.
It is the first time introducing explainable morphological operation into
CNN. Furthermore, the Structural Similarity (SSIM) loss guides the net-
work to pay more attention to predicting the fine structures and clear
boundaries during training. The proposed M2E-Net is evaluated on two
digital retinal databases, DRIVE and CHASEDB1, and achieves the
state-of-the-art performance with AUC of 98.40% and 98.94% respec-
tively. The experimental results demonstrate the effectiveness of our pro-
posed method.
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1 Introduction

Retinal vessel segmentation in fundus images is of great value in the diagnosis,
screening, treatment, and evaluation of various cardiovascular and ophthalmic
diseases, such as diabetes, hypertension, arteriosclerosis, and choroidal neovascu-
larization [18]. However, due to the uneven background distribution and complex
morphological structure, accurate vessel segmentation is a remaining challenge.
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Recent retinal vessel segmentation algorithms published in the literature can
be divided into two categories. The first category of methods is generally follow-
ing traditional image processing approaches, including filter-based and model-
based techniques [15]. For example, different types of filters are jointly employed
to extract 41-dimensional visual features to represent retinal vessels for sub-
sequent classification [7]. To suppress background structure and image noise,
various filtering methods have been proposed, such as Hessian matrix-based
filters [4] and symmetry filter [17]. Another category of methods is based on
deep learning (DL), which has shown its advantages in many computer vision
tasks, including retinal vessel segmentation. Fu et al. [6] proposed a fully convo-
lutional neural network combined with a fully-connected Conditional Random
Fields (CRFs). Wu et al. [13] designed an efficient inception-residual convolu-
tional block for improved feature representation. Lei et al. [8] combined spatial
attention and channel attention to further integrate local features with their
global dependencies adaptively.

Recently, attention mechanisms are becoming prevailing in deep learning. In
medical image segmentation, structural information is the most valuable and of
great significance, such as edges, shapes, etc. In ET-Net, the authors embedded
edge-attention representations to guide the segmentation network to focus on
edge information [16]. Yan et al. [15] make the network increase the attention to
the edge by polishing the loss function.

Standing on the shoulders of these studies, in this paper, we propose the Mul-
tiscale Morphological Enhancement network (M2E-Net) which aims to improve
the performance of retinal vessel segmentation. To reduce the effect of unevenly
distributed background and improve the contrast of capillaries in fundus images,
we designed a multiscale morphological enhancement block. It follows the prin-
ciple of top-hat operation, which is widely used in traditional algorithms. To
the best of our knowledge, it is the first time that the theory of morphologi-
cal operation is introduced into the convolutional neural network. We embed
three multiscale morphological enhancement (M2E) blocks into the shallow lay-
ers of the baseline modified from LinkNet [2]. To predict fine structures and clear
boundaries, we introduce the multiscale SSIM loss into the hybrid loss function
to capture the structural characteristics of vessels. Experimental results on two
digital retinal databases, DRIVE and CHASEDB1, show significant performance
improvements with AUC of 98.40% and 98.94% respectively.

2 Method

The overview of the proposed retinal vessel segmentation framework M2E-Net
is shown in Fig. 1, which is an improved U-shape encoder-decoder architecture.
Specifically, the residual network (ResNet) block is employed as the backbone
for each encoder block. The multiscale morphological enhancement blocks are
inserted in the shallow layers of the encoder to reduce the influence of the uneven
background distribution and enhance the texture contrast. Then the features
from the encoder are added to the decoder path via skip connections to achieve
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Fig. 1. The architecture of the multiscale morphological enhancement network: M2E-
Net.

rich representation for better segmentation. Finally, the hybrid loss consisting
of binary cross-entropy, dice loss, and multiscale structural similarity loss is
employed to guarantee better performance.

2.1 Multiscale Morphological Enhancement Block

Motivation. When performing retinal vessel segmentation based on traditional
algorithms, for the problems of inconspicuous contrast (such as capillaries) and
uneven illumination and background, top-hat or bottom-hat transformation is a
fast and efficient enhancement method. Inspired by this, we hope to embed such
a trainable module in a network to achieve a similar effect during the training. In
addition, with the research on the interpretability of deep learning, we can easily
treat shallow convolution operations as some elementary filtering operations,
such as low-pass filtering, high-pass filtering, and edge detection. However, the
mathematical morphology operations which are common and efficient in image
processing have not been applied or found in trained models. We consider this
to be one of the gaps between traditional image processing algorithms and data-
driven deep learning algorithms.

Implementation. We design a module based on top-hat transformation, which
can extract the bright detail features in the image. The top-hat transformation
mainly includes dilation, erosion, and subtraction. According to the definition of
morphological operations based on the maximum and minimum values, we use
maxpooling with a stride of 1 to implement dilation. This operation is equivalent
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to dilating the input image with a square structure element, whose size is the
same as the kernel size of maxpooling. Similarly, we should use minpooling with
a stride of 1 to achieve erosion. However, there is no minpooling in common deep
learning frameworks, such as tensorflow, pytorch, and mxnet. We implement the
equivalent minpooling for erosion operation by following steps: (1) reverse the
original image by multiplying −1; (2) perform dilation; (3) reverse the dilation
result. Then, we can easily implement a top-hat module with a specified kernel
size of N using the module designed above.

Fig. 2. The illustrations of proposed Multiscale Morphological Enhancement Block.

The top-hat module can only be used to extract bright details, but dark
details are also significant features. We add the control factor before the top-hat
module, which is implemented by a 1×1 convolution. It can automatically adjust
and extract valuable light or dark details and suppress unnecessary details. To
highlight the details of different scales, the outputs of different kernel size top-
hat modules are fused via a 1×1 convolution, which also adjusts the fused result
to the same size as the input. Finally, the input and the result after adaptive
fusion are added as the overall output of the enhancement module. The whole
structure of the M2E block is shown in Fig. 2. In order to ensure compatibility,
the M2E block is entirely implemented by existing operators in the deep learning
framework.

Contribution. Figure 2 shows that after the image or feature map is pro-
cessed by the M2E block, the contrast between capillaries and the background
is enhanced. It can also learn adaptive features which is more advanced than
traditional morphological operations. The detailed features on the image or fea-
ture map mainly exist in the shallow layers of the neural network, so we embed
it in the shallow layers of the convolutional network, specifically after the first



M2E-Net for Retinal Vessel Segmentation 497

three blocks of Resnet in Fig. 1. We also tried to embed the block deeper, and the
experimental results show that the performance of the network will be degraded.
To the best of our knowledge, this is the first time introducing an explainable
morphological operation into the CNN.

2.2 Structural Similarity Loss

When designing a medical image segmentation algorithm based on deep learn-
ing, we pay more attention to pixel-wise segmentation, which can guarantee the
convergence of the model. There are still some limitations, for example, models
trained with BCE loss usually have low confidence in classifying boundary pixels,
leading to blurry boundaries. In [3,16], edge loss is utilized to increase attention
to edges, but it is still calculated at pixel-level, and the structural relevance is not
fully considered. In the area of image quality assessment, structure similarity is
a common evaluation index, which can reflect the structural similarity between
two images [12].

Inspired by the design of dice loss, we convert the structural similarity, origi-
nally proposed for image quality assessment, into a loss function. We integrate it
into our hybrid loss to learn the structural information of the vessel. Let x and
y be two corresponding patches, with the same size N × N , cropped from the
predicted probability map S and the binary ground truth mask G respectively.
The SSIM loss is defined as:

Lssim = 1 − (2μxμy + C1)(2σxy + C2)
(μ2

x + μ2
y + C1)(σ2

x + σ2
y + C2)

(1)

where μx, μy and σx, σy are the mean and standard deviations of x and
y respectively, σxy is their covariance, C1 and C2 are used to avoid dividing
by zero. The patch size N is a hyper-parameter for SSIM and it determines
the receptive field. We apply multiscale SSIM loss here which is a combination
of three SSIM losses with the N fixed to 5, 7, 11. BCE loss, multiscale SSIM
loss, and dice loss are fused together equally as the final employed hybrid loss,
which calculates loss from pixel-level, patch-level, and image-level respectively.
Hence, the trained model could obtain high-quality regional segmentation and
clear boundaries.

Lhybrid = Lbce + Lssim + Ldice (2)

In addition, SSIM loss has a friendly side effect that it introduces edge atten-
tion, which is especially suitable for the segmentation of slender targets such
as vessels. It considers a local neighborhood of each pixel and assigns higher
weights to the boundary, i.e., the loss is higher around the boundary, even when
the predicted probabilities on the boundary and the rest of the foreground are
the same.

As shown in Fig. 3, we enumerate three different situations in the training
process to compare the changes in the loss of BCE and SSIM at different pixel
positions. The first row is the heatmap of BCE loss, and the second row is
that of SSIM loss. These three columns represent three different situations. The
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Fig. 3. The illustrations of the impact of losses. Pfg and Pbg denote the predicted
probability of the foreground and background, respectively

heatmaps indicate that the BCE loss treats pixels at any position equally. For
SSIM, even when the predicted probability on the boundary is the same as the
probability of other pixel positions in the foreground, the loss of the boundary
pixel position is higher. This is equivalent to automatically adding the attention
mechanism to the boundary, which helps to optimize the boundary. Compared
with a simple convex target, the edge pixels in the slender vessels occupy a larger
proportion of the target pixels. Therefore, the characteristics of SSIM make it
very suitable as a loss function for complex structures.

3 Experiments

3.1 Database

Two public databases DRIVE [10] and CHASEDB1 [5] are used to evaluate
the proposed M2E-Net. The DRIVE database includes 40 color fundus images
divided into two parts: 20 training images and 20 testing images. All fundus
images have the same resolution of 565× 584. Each image in the testing set has
two manual labels, while each image in the training set has only one manual
label. We use the labels provided by the first observer as the ground truth for
performance evaluation.

The CHASEDB1 database has 28 color images of the retina and the resolution
of each image is 999×960, which are taken from both eyes of 14 school children.
Usually, the first 20 images are used for training, and the rest are used for testing,
as described in [15]. The binary field of view (FOV) mask and segmentation
ground truth is obtained by manual methods.
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3.2 Implementation Details

Our proposed M2E-Net was implemented based on the PyTorch library (ver-
sion 1.1.0). The network was trained on one NVIDIA K400 GPU which has a
memory about 12 GB. Adam optimizer was applied to optimize the whole net-
work and the learning rate was fixed to 2e−4. To improve the generalization
capabilities of the model, we applied random data augmentation before train-
ing, including adjusting brightness, color, contrast, sharpness, and rotating the
images. The enhancement factors were all following the log-normal distribution.
After data enhancement, z-score processing was performed for normalizing each
channel of images. In the testing stage, the data augmentation was removed
while the z-score processing was still retained. During the training period, we
used a hybrid loss function that is a weighted sum of three items to optimize the
model together.

4 Results

Figure 4 shows two retinal fundus images and their ground truth, together with
the segmentation results obtained by UNet and the proposed M2E-Net. The
example from the DRIVE database is shown in the first row, and the one from
the CHASEDB1 is shown in the second row. Due to the proposed enhancement
block and SSIM loss, it can be observed that M2E-Net produces more accurate
and detailed results than UNet. Vessels at low contrast can also be segmented,
which is helpful for medical analysis and diagnosis.

Fig. 4. Two test images from the DRIVE (1st row) and CHASEDB1 (2nd row)
databases, ground truth (2nd column), the U-Net (3rd column), and the proposed
M2E-Net (4th column).
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Table 1. Results of M2E-Net and other methods on DRIVE database.

Methods Acc AUC Sens Spec

U-Net (2015) [9] 0.9531 0.9601 0.7537 0.9639

R2U-Net (2018) [1] 0.9556 0.9784 0.7792 0.9813

DE U-Net (2019) [11] 0.9567 0.9772 0.7940 0.9816

ACE-Net (2019) [18] 0.9569 0.9742 0.7725 0.9842

Vessel-Net (2019) [13] 0.9578 0.9821 0.8038 0.9802

Proposed method 0.9682 0.9840 0.8149 0.9846

Table 2. Results of M2E-Net and other methods on CHASEDB1 database.

Methods Acc AUC Sens Spec

R2U-Net (2018) [1] 0.9634 0.9815 0.7756 0.9712

MS-NFN (2018) [14] 0.9637 0.9825 0.7538 0.9847

LadderNet (2018) [19] 0.9656 0.9839 0.7978 0.9818

DE U-Net (2019) [11] 0.9661 0.9812 0.8074 0.9821

Vessel-Net (2019) [13] 0.9661 0.9860 0.8132 0.9814

Proposed method 0.9751 0.9894 0.8510 0.9835

As for the evaluation metrics, accuracy, sensitivity, and specificity are used
to evaluate the performance of M2E-Net. To further evaluate the performance of
different neural networks, we also calculated the area under the receiver operat-
ing characteristics curve (AUC). Table 1 and 2 give the quantitative evaluation
results of several recently proposed state-of-the-art methods, and the proposed
M2E-Net on the DRIVE and CHASEDB1 database respectively. The experimen-
tal result shows that the proposed model outperforms other models by achieving
the highest AUC, accuracy, and sensitivity for each database.

Table 3. Ablation studies using the same experiment settings on DRIVE database.

Methods Acc AUC Sens Spec

Baseline 0.9518 0.9684 0.8133 0.9651

Baseline + M2E (S) 0.9665 0.9830 0.8568 0.9813

Baseline + M2E (E) 0.9615 0.9819 0.8136 0.9732

Baseline + MS-SSIM 0.9677 0.9834 0.8290 0.9832

M2E-Net 0.9682 0.9840 0.8149 0.9846

In order to further understand the performance gain of the proposed block
and the effect of the SSIM loss, we conducted the ablation experiments on the
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DRIVE database. Table 3 shows, from top to bottom, the performance of base-
line, baseline with M2E blocks embedded in shallow layers (M2E-Net without
MS-SSIM loss), baseline with M2E blocks embedded entirely, baseline trained
with multiscale SSIM loss and M2E-Net trained with multiscale SSIM loss (pro-
posed method). It reveals that: (1) the multiscale morphological enhancement
block leads to improvement; (2) the block is more suitable for shallow layers;
(3) multiscale SSIM loss helps boost the performance. When the M2E block is
embedded entirely from shallow to deep layers, the performance of the model
declines instead. This is because the M2E module is originally designed to extract
detailed features from images or feature map, which only exist in the shallow
layer of the model. The application of morphological operation in deep layers
will destroy the semantic information and lead to poor performance.

5 Discussion and Conclusions

In this paper, we propose a Multiscale Morphological Enhancement Network
(M2E-Net) for retinal vessel segmentation. The newly designed M2E block is
effective in extracting useful detailed information and reducing the influence of
the uneven background distribution. The multiscale SSIM loss, increasing edge
attention during training, also boosts the segmentation performance. Experimen-
tal results on DRIVE and CHASEDB1 indicate that the proposed method has
significantly outperformed the state-of-the-art for retinal vessel segmentation.
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